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Color and Depth Priors in Natural Images
Che-Chun Su, Lawrence K. Cormack, and Alan C. Bovik, Fellow, IEEE

Abstract— Natural scene statistics have played an increasingly
important role in both our understanding of the function and
evolution of the human vision system, and in the development of
modern image processing applications. Because range (egocentric
distance) is arguably the most important thing a visual system
must compute (from an evolutionary perspective), the joint
statistics between image information (color and luminance) and
range information are of particular interest. It seems obvious
that where there is a depth discontinuity, there must be a higher
probability of a brightness or color discontinuity too. This is
true, but the more interesting case is in the other direction—
because image information is much more easily computed than
range information, the key conditional probabilities are those
of finding a range discontinuity given an image discontinuity.
Here, the intuition is much weaker; the plethora of shadows
and textures in the natural environment imply that many image
discontinuities must exist without corresponding changes in
range. In this paper, we extend previous work in two ways—
we use as our starting point a very high quality data set of co-
registered color and range values collected specifically for this
purpose, and we evaluate the statistics of perceptually relevant
chromatic information in addition to luminance, range, and
binocular disparity information. The most fundamental finding
is that the probabilities of finding range changes do in fact
depend in a useful and systematic way on color and luminance
changes; larger range changes are associated with larger image
changes. Second, we are able to parametrically model the prior
marginal and conditional distributions of luminance, color, range,
and (computed) binocular disparity. Finally, we provide a proof
of principle that this information is useful by showing that our
distribution models improve the performance of a Bayesian stereo
algorithm on an independent set of input images. To summarize,
we show that there is useful information about range in very
low-level luminance and color information. To a system sensitive
to this statistical information, it amounts to an additional (and
only recently appreciated) depth cue, and one that is trivial
to compute from the image data. We are confident that this
information is robust, in that we go to great effort and expense
to collect very high quality raw data. Finally, we demonstrate
the practical utility of these findings by using them to improve
the performance of a Bayesian stereo algorithm.

Index Terms— Bayesian stereo algorithm, color images, Gabor
filter bank, natural scene statistics (NSS).

I. INTRODUCTION

G IVEN continuous, rapid advances in three-dimensional
(3D) imaging and display technology, the quantity and

quality of 3D and stereoscopic data, e.g., image, video,
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movies, geographic models, etc., has increased dramatically.
A substantial amount of research has been conducted towards
better understanding the perception of 3D content, with the
aim of improving the quality of visual experience delivered
by 3D technologies and products. For example, impairments
in viewing and comfort when using 3D displays has been
studied towards developing auto-stereoscipic 3D displays [1],
[2]. There are numerous sources of distortion and visual
discomfort that can be experienced when viewing 3D content.
Understanding how the depth sensation is affected by improper
geometry (stereography) and by signal distortion are crucial
open problems [3]–[5]. We believe that reliable statistical
models of natural depth/range and luminance/chrominance
image information can be used to improve these processes.
We develop such models here and show that joint color/depth
statistical models derived from natural image and range data
can be used to improve statistical approaches to the classic 3D
problem of resolving binocular correspondences.

The evolution of the human vision apparatus has involved
many different factors and driving forces, such as natural
scene statistics, the computational resources available in the
human brain, and the kinds of tasks that humans need to
perform [6]. Natural scene statistics (NSS) have been proven
to be important ingredients towards understanding both the
evolution of the human vision system and the design of image
processing algorithms [7]. Given disparity and other visual
cues, the visual brain is able to reconstruct the geometry of the
3D visual space so quickly, effortlessly and seamlessly that an
individual rarely feels how difficult and ill-posed this problem
can be. Given that humans have evolved this capability by
millions of years of adaptation to the structure and statistics
of the visual environment, it becomes important to understand
these statistics in order to understand the human vision system.

Extensive work has been conducted towards understanding
the luminance statistics of natural scenes [8]–[11], and the
link between natural scene statistics and neural processing
of visual stimuli [12], [13]. It has been discovered that the
distributions of local quantities such as luminance contrast
are scale invariant, and that the power spectra of natural
images vary as 1/ f 2 with radial spatial frequency f . This
has been successfully used to explain and predict early visual
processing in both insects and higher vertebrates [8], [9],
and [14]. The statistics of natural images have been found
to exhibit non-Gaussian behavior, but when projected onto
appropriate multi-scale spaces, e.g., using wavelet bases [15],
or 2D Gabor decompositions [8], the resulting coefficients are
found to obey regular statistical models, such as Gaussian scale
mixtures [16]. These statistical models have been successfully
applied in a variety of image and video applications, such
as image de-noising and restoration [17], and image quality
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assessment [7], and [18]–[20]. Moreover, it has also been
suggested that the spatial receptive fields of the simple cells in
mammalian primary visual cortex (V1) can be characterized as
being localized, oriented, and bandpass, which are comparable
with the basis functions of wavelet or Gabor transforms [21].
It is also widely believed that the goal of the early stages
of visual signal processing is to transform and encode the
input stimuli from natural images into a sparse, efficient
representation to utilize the available computation resources of
neurons [12], [22]. This sparse and efficient coding strategy
along with its over-complete basis leads to non-linear relation-
ships between visual stimuli and neural responses, which can
be used to help understand higher stages of cortical processing
in human vision systems [23]. In this paper, we leverage
these psychophysical and physiological findings by performing
multi-scale, multi-orientation decompositions on color image
data with optimally localized and perceptually relevant Gabor
filter banks. We do this to expand our understanding of the
statistical relationships between cortical neural responses to
luminance, color, and depth/range data in natural images.

Very little work has been done on analyzing the joint
statistics of luminance and range in natural scenes, and
we haven’t found any relating the statistics of color and
range. One major reason for the lack of studies on color
and range statistics has been limited access to high qual-
ity databases of color images and associated ground-truth
range maps. Potetz et al. [24] constructed a database of co-
registered 2D color images and range maps, and discovered
that there is a correlation between range and intensity of
luminance in natural scenes. This negative range-luminance
correlation merely reflects the fact that nearer objects tend
to appear brighter than far objects, on average. The authors
also deployed a few convex range filters, selected for specific
structural properties relevant to computer vision, to filter both
range and luminance images. Using a canonical correlation
analysis, they found a relatively low degree of strictly linear
correlation between the “structure-filtered” luminance and
range patches. In a later study on the same dataset, Potetz
et al. [25] examined the relationships between luminance
and range over multiple scales and applied their results to
shape-from-shading problems. In [26], Yang et al. explored
the statistical relationships between luminance and disparity
in the wavelet domain using a public co-registered database
of range maps and luminance natural images from [24], and
applied the derived models to a Bayesian stereo algorithm.
The authors found that the correlations between bandpass
luminance and bandpass disparity are stronger in coarser
scales, and also showed that the statistical models of 3D
natural scenes improve the quality of computed disparity maps.
Su et al. [27] very recently constructed the LIVE Color+3D
Database [28], a large co-registered database of high-quality
2D color images and high-resolution ground-truth range maps
(1280 × 720), and explored simple statistical relationships
between band-pass responses to luminance/chrominance and
range gradients in natural scenes.

Color is an important and dense natural visual cue that is
used by the brain to reconstruct both low-level and high-level
visual percepts. The cone photoreceptors, which are densely

distributed in the fovea centralis of the retina, capture and con-
vey rich information both in space and time. While the cones
themselves do not encode color, they do come in three types
that have different spectral sensitivities. Hence, comparisons of
the outputs of the different cone types by the retinal ganglion
cells allow dense spatiotemporal chromatic information to be
transmitted from the retina to the primary visual cortex (V1).
Likewise, color can be used at later processing stages to help
infer large-scale shape information to better solve visual tasks
by both humans and machine algorithms [29].

Moreover, it has been demonstrated that the perception
of color and depth are related [30], and that chromatic
information can be used to improve the solution of stereo
correspondence problems [31], [32]. Therefore, interaction and
correlation between color and depth need further examination.
Towards obtaining a better understanding of the statistical
relationships between color and range, we studied both the
marginal and joint statistics of color and range using the
co-registered color images and ground-truth range maps in the
LIVE Color+3D Database [28]. To better approximate color
perception in human vision systems, all color images in RGB
were transformed into the more perceptually relevant CIELAB
color space. We use CIELAB since it is optimized for quanti-
fying perceptual color difference and it better corresponds to
human color perception than does the perceptually nonuniform
RGB space [33].

An important stereoscopic cue, disparity, comes from the
angular difference between the two different retinal images
received by the two frontally placed, horizontally separated
eyes. It has been verified that there exist simple and complex
neurons tuned to binocular disparity in V1 [34], [35], and the
human vision system has very fine stereo acuity, which falls
between 2 arcsec to 6 arcsec under the best conditions [36].
The visual system also has a large upper disparity limit,
which reaches 7° for crossed disparities and 12° for uncrossed
disparities [37]. The excellent acuity and broad operating
range of stereopsis indicate that disparity is extensively used
for depth perception. Liu et al. [38] studied the disparity
distributions of natural scenes by converting forest range maps
to disparity maps. They found that the disparity distributions
at eye level are centered at zero, non-Gaussian, but well
modeled as generalized Gaussian. A similar study on indoor
range maps showed similar results. Moreover, the authors
correlated disparity sensitivity with naturally available dispar-
ities by showing that the proportion of near- and far-tuned
disparity distributions qualitatively agrees with the distribution
of disparity-tuning neurons in V1 [39]. This suggests that
the human vision system may use the rich disparity cues
both in near- and far-viewing distances to recover the depth
information in natural scenes.

We now proceed as follows. Section II briefly introduces
the database used in the statistical analysis and modeling, and
Section III explains methods that were used to pre-process
both image and range data. The detailed statistical modeling of
depth/range and luminance/chrominance data is then explained
in Sections IV and V. Section VI develops a Bayesian
stereo algorithm using the derived statistical models, which
delivers good results as shown by the simulation results in
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(a)

(b)

(c)

Fig. 1. Three examples of the natural scenes, 2D color images on the left
and aligned 2D range maps on the right. (a) Scene 1. (b) Scene 2. (c) Scene 3.

Section VII. Finally, Section VIII concludes with thoughts for
future work.

II. DATA ACQUISITION

To derive the natural scene statistics of image and range
data in a more realistic and wider viewing angle, we use
the LIVE Color+3D Database, which contains 12 sets of
color images with corresponding ground-truth range maps at
a high-definition resolution of 1280 × 720 [27], [28]. The
image and range data in the LIVE Color+3D Database were
collected using an advanced range scanner, RIEGL VZ-400,
with a Nikon D700 digital camera mounted on top of it [40].
Since there are inevitable translational and rotational shifts
when mounting the camera onto the range scanner, calibration
is performed before data acquisition. The mounting calibration
is done manually using the RIEGL RiSCAN PRO software,
which is designed for scanner operation and data process-
ing [41]. Next, to acquire the image and range data in natural
scenes, the device obtains distances by lidar reflection and
waveform analysis as it rotates, and then the digital camera
takes an optical photograph with the same field of view. The
acquired range data are exported from the range scanner as
point clouds with three-dimensional coordinates and range
values, while the image data are stored in the digital camera.
Finally, to obtain the aligned 2D range map with the 2D image,
the 3D point clouds are projected and transformed into the 2D
range map by applying the pinhole camera model with lens
distortion [42].

The natural environments where the image and range data
were collected include areas around Austin, Texas, including
the campus at The University of Texas and the Texas State
Capitol. Fig. 1 shows three examples of acquired natural
scenes with 2D color images and aligned 2D range maps.
Note that in our database, the unit of the range data acquired
by using the RIEGL VZ-400 range scanner is meter (m),
with precision up to 3 (mm), and for display purposes, the
range maps shown in Fig. 1 are first re-scaled using the

logarithm, i.e., R′ = log(1 + R), and normalized to [0, 255].
The black holes, i.e., range values equal to zero, are locations
where the range scanner was not able to measure the reflected
laser beams and report range values. The reasons include the
material of the object surface, wind disturbance, limitation
of the scanner, etc. These invalid range values are carefully
avoided during the filtering process in the statistical analysis
and modeling.

III. DATA PRE-PROCESSING

Human vision systems extract abundant information from
natural environments by processing visual stimuli through
different levels of decomposition and interpretation. Since
we want to learn and explore the statistical relationships
between luminance/chrominance and range/disparity and how
these statistics might be implicated in visual processing, and
subsequently used in image processing algorithms, some pre-
processing was performed on both the 2D color images and
the co-registered 2D ground-truth range maps.

A. Color Space Conversion and Gabor Filter Bank

All color images were transformed into the perceptually
relevant CIELAB color space having one luminance (L*) and
two chrominance (a* and b*) components. CIELAB color
space is optimized to quantify perceptual color differences and
better corresponds to human color perception than does the
perceptually nonuniform RGB space [33]. The coordinate L*
of the CIELAB space represents the lightness of the color,
a* represents its position between red/magenta and green, and
b* represents its position between yellow and blue. Moreover,
the nonlinear relations for L*, a*, and b* mimic the nonlinear
responses of human eyes, starting from the cone cells (L, M,
and S) in the retina. Each image was then decomposed by a 2D
Gabor filter bank over multiple scales and orientations, which
serves to mimic the receptive fields of simple cells in V1 [8],
[43]–[45]. Both the luminance and chrominance components
of the transformed color images and the converted disparity
maps were filtered by the same 2D Gabor filter bank.

Before discussing the statistical analysis and modeling,
we wish to briefly motivate them by discussing the forma-
tion of receptive fields in V1 neurons and their relevance
to understanding natural scene statistics. From physiologi-
cal evidence [46], it is known that the simple cells in V1
process visual signals received from LGN (Lateral Geniculate
Nucleus) neurons. The simple cells can be linearly modeled
as having elongated, center-surround receptive fields that are
highly selective in spatial frequency and orientation, remark-
ably like a Gabor filter. Thus, the physical statistics of the
natural environment are manifested in the spectral responses
of neurons in the visual cortex [12], [13], and likely in the
responses of disparity-tuned neurons as well [38].

A complex 2D Gabor filter can be written

G(x, y, σ1, σ2, ζx , ζy, θ)

= 1

2πσ1σ2
e
− 1

2

[(
R1
σ1

)2+
(

R2
σ2

)2
]
ei(xζx+yζy) (1)
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where R1 = x cos θ + y sin θ and R2 = −x sin θ + y cos θ ,
σ1 and σ2 are the standard deviations of an elliptical Gaussian
envelope along the rotated axes, ζx and ζy are the spatial center
frequencies of the complex sinusoidal carrier, and θ is the
orientation.

Since physiological evidence shows that visual neurons
in primary visual cortex usually have an elliptical Gaussian
envelope with an aspect ratio of 0.25–1.0, with propagating
direction along the short axis of the elliptical Gaussian enve-
lope [47], we use complex 2D Gabor filters of the form

G(x, y, γ , σ, ω, θ) = 1

2πγσ 2 e
− 1

2

[(
R1
σ

)2+
(

R2
γ σ

)2
]
eiωR1 (2)

where γ = σy/σx is the aspect ratio of the elliptical Gaussian

envelope, σ = σx , and ω =
√

ζ 2
x + ζ 2

y is the radial center
frequency. To create a suitable set of Gabor filter banks
which can cover most of the frequency domain, the two
parameters of the elliptical Gaussian envelope need to be
chosen properly, including the aspect ratio, γ , and the standard
deviation, σ [48]. Here, six spatial center frequencies, 0.84,
1.37, 2.22, 3.61, 5.87, and 9.53 (cycles/degree) are used, with
four different sinusoidal grating orientations for each spatial
frequency: horizontal (0-deg), diagonal-45 (45-deg), vertical
(90-deg), and diagonal-135 (135-deg) [49], [50]. The aspect
ratio, γ , is chosen to be 1.0 [47]. The spatial frequency
bandwidth of each sub-band is 0.7 (octave), and neighboring
filters intersect at half-power point, i.e., 3-dB point [49], [51].

B. Range and Disparity

In the following sections, we study the statistics of decom-
posed range data and explore the statistical relationship of
range with decomposed luminance and chrominance in natural
images. First, we examine the conditional distribution of range
gradient data given luminance/chrominance. Since the depth
information acquired by the human vision system is more
relative than absolute, which means that we know which
objects are further and which are closer, but we are not sure
about the exact distance of each object from us, the disparity
serves to be an important stereoscopic cue and its statistics
is of most interest towards understanding depth perception.
Therefore, in order to be able to examine statistical correlations
between range/depth and luminance/chrominance information
in the presence of stereoscopic fixation, we also convert
ground-truth range maps into disparity maps under a parallel-
viewing model. Fig. 2 depicts the geometry of the parallel-
viewing model. The disparity values are computed as:

dp

fc
= dio

R
⇒ dp = fc

dio

R
(3)

where dp is disparity, fc is the focal length of the camera,
dio is the inter-ocular distance, and R is ground-truth range.
Finally, the converted disparity maps are decomposed by the
same multi-scale, multi-orientation 2D Gabor filter bank.

IV. STATISTICAL ANALYSIS

The statistics of 2D and 3D natural scenes have previously
been learned by the human visual apparatus over the eons.

range
(     )

inter-ocular 
distance (       )

focal
length
(     )

disparity
(     )

natural scene

dp

dio

fc

R

scanner 
mounted with 

camera

Fig. 2. Geometry of the parallel-viewing model.

These powerful, physically and perceptually relevant con-
straints form priors which can be applied to solve visual tasks.
Since acquiring geometric knowledge about the surrounding
3D environment is a basic element of human visual activity,
accurate perception and consistent interpretation of natural
range/depth information is an essential processing role of the
early visual processing pathway.

Towards understanding the statistical basis of such computa-
tions, we first examine the marginal statistics of luminance and
chrominance Gabor responses, and the conditional statistics
of range gradients given measurements of these responses.
Our analysis is performed on the (demodulated) magnitude
responses of the Gabor quadrature functions, expressed as
root mean square (RMS) values of the sine and cosine
responses [8]. Based on these measurements, we form models
of the prior marginal and conditional distributions towards
leveraging them in solving model-based visual processing
problems.

A. Marginal Statistics

All color images were first transformed into the perceptually
relevant CIELAB color space, then decomposed by a multi-
scale, multi-orientation 2D Gabor filter bank. This serves
the dual role of supplying optimally conjoint spatio-spectral
decompositions of the data, while also providing a reasonable
approximation of area V1 responses. As a first point of study,
we computed the mean and standard deviations of the lumi-
nance and chrominance Gabor magnitude responses against
spatial frequency and orientation. Specifically, we found the
Gabor magnitude responses on the L* channel for all 12 test
images in the LIVE Color+3D Database. We plot mean and
standard deviation of these responses as a function of spatial
frequency and orientation in Figs. 3(a) and (b). The same
computation was performed on the a* and b* channels as well,
and is plotted in Figs. 3(c)–(f).

As generally expected, mean magnitude responses fall off
approximately as 1/ f 2 with spatial frequency f . This agrees
with findings that the power spectra of natural images varies
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Mean and standard deviation (STD) of Gabor magnitude responses against radial spatial frequency (a) mean for L*, (b) STD for L*, (c) mean for
a*, (d) STD for b*, (e) mean for b*, and (f) STD for b*.

as 1/ f 2 with spatial frequency [8], [9], and [52]. This funda-
mental model has been successfully used to explain and predict
certain early stages of visual processing in insects and higher
vertebrates [14], [53]–[55]. An interesting observation is that
the curves for the diagonal-45 and diagonal-135 orientations
nearly overlap in all three channels. For the L* channel, the
curves for the horizontal and vertical orientations also overlap,
while for the a* and b* channels, the curves are distinct.

The standard deviations of the magnitude responses also
follows a 1/ f 2 shape for both luminance and chrominance
channels. As observed for the mean magnitude responses, the
curves for diagonal orientations overlap across all three chan-
nels. However, the standard deviation curves for horizontal
and vertical orientations are distinct for both luminance and
chrominance channels.

The 1/ f 2 distribution of mean and standard deviation of the
Gabor responses implies equal energy within equal (octave)
bandwidths, and also equal variation of energy within equal

bands over different orientations in natural images. Moreover,
the distribution of spectral energy contained in the luminance
channel is different from that carried by the chrominance chan-
nels in natural environments. These findings can potentially
be utilized to better understand and explain various stages of
visual processing.

B. Conditional Statistics

It may be observed from natural scenes that there is sub-
stantial co-occurrence of luminance/chrominance edges and
range/depth discontinuities. For example, if there is a discon-
tinuity in the range/depth map, it is highly likely that an edge
of the same orientation is co-located in the corresponding color
image. However, the intuition of the other direction is rather
weaker; many image edges must exist without corresponding
discontinuities in range due to the plethora of shadows and
textures in the natural environment. In order to examine the
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Means of range gradient magnitudes against Gabor magnitude responses over different spatial frequencies with the same horizontal (0-deg) orientation
(a), (c), and (e) for L* and (b), (d), and (f) for a* and b*.

relationship between chromatic image and range singularities,
we studied the conditional statistics of range gradients given
Gabor image responses.

Again, all color images were first transformed into the per-
ceptually relevant CIELAB color space, then passed through
the multi-scale, multi-orientation 2D Gabor filter bank, and
the magnitude responses computed. We also computed the
gradient magnitude matrix, Rg , of each range map, R, for
each corresponding color image in the database, which is
given by

Rg(i, j) = ‖∇ R(i, j)‖ =
√(

∂ R(i, j)

∂x

)2

+
(

∂ R(i, j)

∂y

)2

(4)

where

∇ R(i, j) =
[
∂ R(i, j)

∂x
,
∂ R(i, j)

∂y

]T

∂ R(i, j)

∂x
= R(i + 1, j) − R(i − 1, j)

2
∂ R(i, j)

∂y
= R(i, j + 1) − R(i, j − 1)

2
. (5)

To obtain conditional statistics, we binned the magnitude
responses across all images for each luminance and chromi-
nance channel. Within each bin, we also collected the cor-
responding gradient magnitudes for all range maps. Finally,
we computed the conditional mean and standard deviations of
magnitude of the range gradients given the Gabor magnitude
responses for the L*, a*, and b* channels. Figs. 4 and 5 plot
the mean and standard deviation, respectively, of the range
gradient magnitudes against Gabor magnitude responses for
luminance and chrominance channels for an exemplar sub-
band. Very similar curves and results are observed at different
sub-bands.

The six panels in Fig. 4 plot the conditional statistics of
mean range gradient magnitude given magnitude responses of
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Standard deviations of range gradient magnitudes against Gabor magnitude responses over different spatial frequencies with the same horizontal
(0-deg) orientation (a), (c), and (e) for L* and (b), (d), and (f) for a* and b*.

horizontal Gabors at three different spatial frequencies. For
the luminance channel, the range gradient magnitude increases
monotonically with small Gabor responses, but saturates with
larger Gabor responses over all frequencies. On the other
hand, the magnitude of range gradients increases monoton-
ically with Gabor magnitude responses at all frequencies
for both chromatic channels, and there is no saturation for
large Gabor responses. Similar trends are observed for the
standard deviation of range gradients conditioned on the
magnitude of horizontal Gabor responses at three different
spatial frequencies, as shown in Fig. 5. These monotonic
relationships between range gradients and luminance and
chrominance Gabor responses demonstrate a high correlation
between these quantities, while also strengthening the intuition
that, if there are strong variations in a natural image, i.e.
large Gabor responses, there is a high likelihood of co-located
large variations, i.e. large range gradients, in the corresponding
range map. Moreover, the luminance channel carries infor-
mation that is different from that carried by the chrominance
channels in the sense that the means and standard deviations of
range gradient magnitudes both saturate given large luminance

Gabor magnitude responses, which implies that the chromatic
components in natural images can also possibly be utilized
in depth perception, a concept that is supported by our prior
human study [30].

To further validate the existence of strong correlations
between range gradients and image Gabor responses, we per-
formed a simple hypothesis test on the sample correlation coef-
ficients between range gradients and luminance/chrominance
Gabor responses using the same sub-band as in Figs. 4(c)
and 5(c). The t-score is given by

t = r
√

n − 2

1 − r2 (6)

where r is the sample correlation coefficient and n is the
number of samples. Since there are millions of points within
each sub-band, we iterated 100 times, taking 1000 random
samples per iteration to compute the correlation coefficient.
The final t-score was obtained by finding the average correla-
tion coefficient over 100 iterations with the sample size n equal
to 1000. Table I lists the t-scores of the color channels and the
corresponding decisions using a two-sided level of significance
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TABLE I

HYPOTHESIS TEST OF CORRELATION ON CONDITIONAL STATISTICS

[FREQUENCY = 5.87 (CYCLES/DEGREE) AND ORIENTATION = 0-DEG]

Channel |t-score| p-value (10−3) Decision

L* 3.342 0.205 Reject H0

a* 2.933 7.681 Reject H0

b* 3.343 0.357 Reject H0

α = 0.05. It can be seen from Table I that the null hypothesis,
H0, that there is no correlation between range gradients and
image Gabor responses was rejected for all three channels.
Very similar results were obtained for all other sub-bands.
Note that this corresponds to a very conservative test. Testing
the full data set would yield minuscule p-values because of
the large n. Rather, we did the test using approximately the
number of samples that would be available instantaneously
over about 0.005 (mm2) on the primate retina [or about 0.056
(deg2) of visual angle].

V. STATISTICAL MODELS

The statistical analysis described thus far discovers a link
between range/depth variations and co-located luminance and
chrominance variations in natural images, and by extension,
in the neural responses of luminance/chrominance in primary
visual cortex (V1). In this section, we seek to quantitatively
model the statistical relationships between co-located lumi-
nance/chrominance and range/depth information in natural
images. The Gabor magnitude responses were computed as
in the previous analysis on both luminance and chrominance
channels. To acquire statistics of the important stereoscopic
cue, disparity, used in the perception of depth by the human
vision system, the ground-truth range maps were converted
into disparity maps using the parallel viewing model described
in Section III-B. These converted disparity maps were also
subjected to a multi-scale, multi-orientation Gabor decompo-
sition, from which the disparity Gabor magnitude responses
were computed. Since we want to derive statistical models
that relate disparity and color image data, and demonstrate
their usefulness, the marginal distributions of the Gabor mag-
nitude responses to luminance/chrominance and disparity, and
the conditional distributions of luminance/chrominance given
disparity Gabor magnitude responses are of great interest.

A. Marginal Distributions

In order to examine the marginal distributions of luminance,
chrominance, and disparity processed by different sub-bands,
the Gabor responses were first collected across all scenes
in the database. The empirical marginal distributions for all
quantities of interest within each sub-band were obtained as
histograms computed by binning all of the Gabor magnitude
responses within each channel at that sub-band.

Fig. 6 shows the marginal distributions of the luminance,
chrominance, and disparity Gabor magnitude responses for one
sub-band. The circle-dotted, square-dotted, cross-dotted, and
triangle-dotted lines depict the best (least-squares) generalized
log-normal, Weibull, Rayleigh, and exponential distribution

fits, respectively, to each marginal distribution. In particular,
the generalized log-normal distribution is given by

pg(x) =

⎧⎪⎨
⎪⎩

βg

2xα�
(

1
βg

) exp

[
−

( | ln(x)−μg|
αg

)βg
]
, x ≥ 0

0, x < 0
(7)

where �(·) is the gamma function, μg , αg , and βg are the
location, scale, and shape parameters, respectively. The general
Weibull distribution is given by

pw(x) =
⎧⎨
⎩

βw
αw

(
x

αw

)(βw−1)
e
−

(
x

αw

)βw

, x ≥ 0

0, x < 0
(8)

where αw and βw represent the scale and shape parameters,
respectively, which allows the model to include exponential
(βw = 1) and Rayleigh (βw = 2) distributions as special
cases depending on the shape parameter. The characteristic
shape of the marginal distributions is quite different from
the symmetric Gaussian-like distributions used in other stud-
ies. These previous models have captured the statistics of
the luminance channel of natural images using band-pass
wavelet filter-banks, e.g., steerable pyramid decompositions,
but without finding the magnitude (envelope) responses. Here
we have used the Gabor filter-bank to match the receptive
fields of simple neurons in primary visual cortex (V1), and
computed the Gabor magnitude responses to mimic the energy
exchange in neural signal communication. It can be seen that
the generalized log-normal fits better capture the shapes of all
four marginal distributions, while the Weibull and exponential
fits are not able to match the positive-skewed bell shapes, and
the Rayleigh fits fail to model the heavy tails. In other words,
with the three model parameters, location, scale and shape,
the generalized log-normal function can flexibly adjust both its
peak location and its variance, i.e., the width of distribution, to
better fit the characteristic shape of the marginal distribution of
image and disparity magnitude responses. We also performed
a numerical comparison of different distribution fits at the
same sub-band using the sum of squared error, as shown in
Table II. In accordance with the visual comparison in Fig. 6,
the generalized log-normal functions yield the best fits among
all four marginal distributions, i.e. fixing the parameters gives
much worse fits. Note that the marginal distributions of the
filtered luminance, chrominance, and disparity over different
sub-bands all share similar shapes. For reference, we list the
best-fit generalized log-normal parameters for the marginal
distributions of luminance, chrominance, and disparity Gabor
magnitudes at all sub-bands in [28].

B. Conditional Distributions

Similarly, the conditional distributions of luminance and
chrominance given disparity at different sub-bands were
obtained by first computing and collecting the filtered lumi-
nance, chrominance, and disparity magnitude responses across
all scenes, then computing the histograms for each sub-band.
For each sub-band, the conditional histograms of luminance
and chrominance given disparity were computed by first
binning the disparity magnitude responses, then binning the
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(a) (b)

(d)(c)

Fig. 6. Marginal distributions of Gabor magnitude responses at one sub-band for (a) L*, (b) a*, (c) b*, and (d) disparity.

TABLE II

COMPARISON OF MARGINAL DISTRIBUTION FITS USING SUM OF

SQUARED ERROR (10−2)

Marginal Distribution

L* a* b* Disparity

Exponential fit 0.116 0.245 0.222 8.569

Rayleigh fit 1.143 1.141 1.292 12.008

Weibull fit 0.103 0.202 0.197 0.823

G. Log-normal fit 0.078 0.057 0.041 0.785

filtered luminance/chrominance magnitude responses within
each disparity bin. Fig. 7 shows the conditional distributions
of all three luminance and chrominance components (solid
lines), as well as their corresponding best-fit generalized log-
normal distributions (dotted lines) and their model parameters.
It can be seen that the conditional distributions of luminance
and chrominance given disparity are well-fitted by the gener-
alized log-normal distribution. As discussed in Section V-A,
the flexible generalized log-normal function is a better model
than other specific fits, such as Weibull, exponential, and
Rayleigh functions. For the conditional distributions of lumi-
nance given disparity, the location parameter (μg) of the
fitted generalized log-normal model increases monotonically
and linearly as the disparity magnitude response increases,
while both the scale (αg) and shape (βg) parameters decrease
monotonically and linearly across the disparity magnitude
responses. On the other hand, for the conditional distributions
of chrominance given disparity, all three parameters exhibit
a nearly linear relationship with the disparity magnitude

responses. In general, as the disparity magnitude response
increases, the conditional distributions of both luminance and
chrominance become more heavy-tailed, which implies that
if there is a large disparity variation, i.e. a large range/depth
discontinuity, large luminance and chrominance variations are
highly likely to be co-located in the corresponding color
images. These monotonic correlations between the Gabor
responses of disparity and luminance/chrominance in natural
images confirm the observations as well as the computed con-
ditional statistics between range and luminance/chrominance
variations discussed in Section IV-B. Moreover, the lin-
ear relationships between the parameters of the generalized
log-normal model and the magnitude of disparity Gabor
responses nicely captures the heavy-tailed conditional distri-
butions of both filtered luminance and chrominance chan-
nels. Next, we will leverage these new joint NSS models to
solve an exemplar 3D image processing problem: binocular
correspondence.

VI. APPLICATION TO A CHROMATIC BAYESIAN

STEREO ALGORITHM

Given a pair of left and right images, a binocular stereo
algorithm computes a disparity map from one image to the
other. The basic idea is to minimize an energy functional which
captures differential binocular cues between left and right
images within an optimization framework [56]. A Bayesian
stereo algorithm is able to adapt a likelihood (conditional
distribution) and a prior (marginal distribution) of natural
scene statistics (NSS) within the energy functional to be
minimized, thus forcing the solution to be consistent with
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. 7. Conditional distributions of filtered luminance (L*) and chrominance (a* and b*) magnitudes given filtered disparity magnitudes from one sub-band
(a), (c), and (e) conditional distributions (solid lines) along with the best-fit generalized log-normal models (dotted lines), (b), (d), and (f) their corresponding
best-fit generalized log-normal parameters.

the observed statistical relationships that occur between lumi-
nance, chrominance, and disparity data in natural scenes, as
derived in Section V. Given a pair of left and right images,
Il and Ir , then to estimate the disparity map, D, from the
right (matching) to the left (reference) image, the canonical
Bayesian stereo formulation takes the form [57]

D = argmax
D′

P(D′|(Il , Ir ))

= argmax
D′

P((Il , Ir )|D′)P(D′) (9)

where P(D′|(Il , Ir )) is the posterior probability to be maxi-
mized, and P((Il , Ir )|D′) and P(D′) are the likelihood and
prior probabilities, respectively. Taking the logarithm of the
product of the likelihood and prior, the Bayesian formulation

corresponds to minimization of the energy function:

D = argmin
D′

E p + λEs (10)

where E p is the photometric energy expressed by the likeli-
hood P((Il , Ir )|D′), Es is a smoothness term derived from the
prior P(D′), and λ is a weight. Note that E p can encapsulate
all three luminance and chrominance components, L∗, a∗, and
b∗, and be written

E p =
∑
i, j

∑
k∈{L∗,a∗,b∗}

|Ilk (i, ( j − D′(i, j))) − Irk (i, j)|. (11)

To incorporate the marginal and conditional NSS distribu-
tions that we have measured and modeled, the Bayesian stereo
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formulation can be re-written as

D = argmax
D′

P(D̃′|(Il , Ir ), Ĩl )

= argmax
D′

P((Il , Ir )|D̃′, Ĩl )P( Ĩl |D̃′)P(D̃′) (12)

= argmin
D′

E p + λ(EN SSc + EN SSm ) (13)

(taking logarithm of (12)), where Ĩl and D̃′ are the magnitudes
of the Gabor filtered responses of Il and D′, respectively,
E p is the photometric energy derived from P((Il , Ir )|D̃′, Ĩl),
EN SSc and EN SSm are energy terms related to the conditional
and marginal NSS distributions, respectively, and λ is the
constant weight.

Finally, since both the marginal distribution of disparity and
the conditional distributions of luminance and chrominance
given disparity can be modeled as generalized log-normal,
the complete formulation of the proposed Bayesian stereo
algorithm incorporating the NSS models can be written

D = argmin
D′

∑
i, j

[ ∑
k∈{L∗,a∗,b∗}

(
E p,k + λk EN SSc,k

)

+ λm EN SSm

]
(14)

where by introducing Eqs. (7) and (11)

E p,k = |Ilk (i, ( j − D′(i, j))) − Irk (i, j)| (15)

EN SSc,k = ln( Ĩlk (i, j)) + ln

(
2αk�( 1

βk
)

βk

)

+
(

| ln( Ĩlk (i, j)) − μk |
αk

)βk

(16)

EN SSm = ln(D̃′(i, j)) + ln

⎛
⎝2αD̃′�( 1

β
D̃′ )

βD̃′

⎞
⎠

+
(

| ln(D̃′(i, j)) − μD̃′ |
αD̃′

)β
D̃′

(17)

where μk , αk , and βk are the location, scale, and shape para-
meters, respectively, of the best-fit generalized log-normal dis-
tributions of filtered luminance and chrominance conditioned
on filtered disparity, μD̃′ , αD̃′ , and βD̃′ are the location, scale,
and shape parameters of the best-fit generalized log-normal
distribution of filtered disparity, respectively, and λk and λm

are their corresponding constant weights. Note that the three
parameters, μk , αk and βk , can be further linearly modeled
with the disparity Gabor magnitudes, as illustrated in Fig. 7:

μk = mμ,k D̃′ + bμ,k (18)

αk = mα,k D̃′ + bα,k (19)

βk = mβ,k D̃′ + bβ,k (20)

where mμ,k , mα,k , and mβ,k are the slope parameters for
μk , αk , and βk , respectively, and bμ,k , bα,k , and bβ,k are the
corresponding offset parameters. To solve the optimization of
the proposed Bayesian stereo algorithm, we apply simulated
annealing on the derived energy function (14) [58].

VII. SIMULATION RESULTS

We simulate and evaluate the proposed Bayesian stereo
algorithm utilizing the derived NSS models on stereo image
pairs from the widely used Middlebury database [56]. To
demonstrate the effectiveness of the derived statistical mod-
els relating luminance/chrominance and disparity in nat-
ural scenes, we compared the computed disparity maps
using the Bayesian stereo algorithm with related formu-
lations and models, including the canonical formulation
using (10), the NSS model proposed in [26], and the pro-
posed luminance-chrominance-range NSS model (14). In [26],
the authors derived an NSS model using only luminance
information in the wavelet domain, and incorporated only
the conditional distribution of luminance given disparity
into the Bayesian stereo algorithm. Using the proposed
luminance-chrominance-range NSS model, we implement
the Bayesian stereo algorithm using two formulations: one
includes only the luminance component (L*), while the
other includes both luminance and chrominance (a* and b*)
components.

A. Comparison With Previous Models

Figs. 8–11 show simulation results of the four stereo image
pairs, Tsukuba, Venus, Cones, and Teddy, from the Middle-
bury database, including the original left and right images,
the ground-truth disparity map, and the computed disparity
maps obtained by the three different Bayesian formulations.
Generally, computed disparity maps delivered by the stereo
model embodying both luminance (L*) and chrominance (a*
and b*) NSS priors are very close to the corresponding ground-
truth disparity maps, retaining more details than the canonical
formulation, and better adherence to smooth regions than the
ones computed by the previous NSS model. On Tsukuba, the
canonical formulation scrubs regions, e.g., around the camera,
while the algorithm using the previous luminance-only NSS
model tends to “over-segment.” The proposed algorithm using
luminance-chrominance-range NSS priors is better able to find
a balance between disparity smoothness and 3D detail with
the aid of the additional regularity supplied by modeling the
disparity and luminance/chrominance channels. For Venus and
Teddy, it can be seen that the canonical formulation fails to find
binocular correspondences in some smooth regions without
edges, while the previous luminance-only NSS model is able
to solve those disparity ambiguities using luminance and dis-
parity priors. By introducing conditional priors of chrominance
given depth, the luminance-chrominance-range NSS model
further improves the accuracy of the computed disparity map
by cleaning up the smooth 3D surfaces. On Cones, both the
canonical formulation and the previous luminance-only NSS
model do a good job matching image details while maintaining
disparity smoothness; yet, they are not able to find binocular
correspondences around some of the occluded regions on
the cones. However, the luminance-chrominance-range NSS
model allows most of the binocular correspondences around
those occluded regions to be successfully resolved.

In addition to visual comparison, we also conducted a quan-
titative evaluation to compare the performance of the stereo
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(a) (b) (c)

(e) (f)(d)

Fig. 8. Simulation results on Tsukuba from the Middlebury database, including the original stereo image pair, the ground-truth disparity map, and disparity
maps using computed Bayesian stereopsis under different NSS models. (a) Left image. (b) Right image. (c) Ground-truth disparity map. (d) Canonical
formulation. (e) Previous NSS model. (f) Proposed luminance-chrominance-range NSS model with L*, a*, and b*.

(a) (b) (c)

(d) (e) (f)

Fig. 9. Simulation results on Venus from the Middlebury database, including the original stereo image pair, the ground-truth disparity map, and disparity maps
using computed Bayesian stereopsis under different NSS models. (a) Left image. (b) Right image. (c) Ground-truth disparity map. (d) Canonical formulation.
(e) Previous NSS model. (f) Proposed luminance-chrominance-range NSS model with L*, a*, and b*.

algorithm embodying the derived luminance-chrominance-
range NSS model with the canonical formulation and the pre-
vious luminance-only NSS model. Tables III through V give
numerical comparisons between the proposed model and the
other two formulations using three different metrics: bad-pixel
percentage, including overall, non-occluded, and textured, for
all four test image pairs.

Bad-pixel percentage, Pbp, is a commonly used error metric
to measure pixel-wise differences between computed and
ground-truth depth maps [56], [59]. It takes the form:

Pbp = 1

NS

∑
i, j∈S

(|DC (i, j) − DG(i, j)| > δD) (21)

where DC and DG are the computed and ground-truth
disparity maps, respectively, S is the image region over which
Pbp is calculated, NS is the number of pixels in S, and δD is
a threshold expressing disparity error tolerance. Here we use
δD = 1.0, which coincides with previously published work
comparing stereo algorithms [60], [61]. The three metrics of
bad-pixel percentage used here are distinguished by the dif-
ferent regions S. The overall bad-pixel percentage in Table III
is calculated over the entire disparity map, i.e. S = {(i, j) |
1 ≤ i ≤ h, 1 ≤ j ≤ w} where h and w are the height and
width of the disparity map, respectively. For the non-occluded
bad-pixel percentage, S is defined as the region that is not
occluded in the matching image, i.e. pixels appearing in the
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(a) (b) (c)

(d) (f)(e)

Fig. 10. Simulation results on Cones from the Middlebury database, including the original stereo image pair, the ground-truth disparity map, and disparity
maps using computed Bayesian stereopsis under different NSS models. (a) Left image. (b) Right image. (c) Ground-truth disparity map. (d) Canonical
formulation. (e) Previous NSS model. (f) Proposed luminance-chrominance-range NSS model with L*, a*, and b*.

(a) (b) (c)

(b) (f)(e)

Fig. 11. Simulation results on Teddy from the Middlebury database, including the original stereo image pair, the ground-truth disparity map, and disparity maps
using computed Bayesian stereopsis under different NSS models. (a) Left image. (b) Right image. (c) Ground-truth disparity map. (d) Canonical formulation.
(e) Previous NSS model. (f) Proposed luminance-chrominance-range NSS model with L*, a*, and b*.

reference image have correspondences in the matching image.
Finally, the textured bad-pixel percentage is calculated only
over regions where the intensity of image horizontal gradients
is beyond some threshold, i.e. pixels belonging to prominent
image details, edges, and texture in the reference image.

From Tables III through V, it is apparent that the numerical
results support the visual comparisons: the Bayesian stereo

algorithm using the luminance-chrominance-range NSS model
outperforms the other two methods in terms of all three
different metrics of bad-pixel percentage. Taking Venus for
example, with respect to all three bad-pixel percentage met-
rics, the proposed luminance-chrominance-range NSS model
achieves more than 100% improvement over the previous NSS
model, which, in turn, significantly improves on the canonical
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TABLE III

COMPARISON OF BAYESIAN STEREO ALGORITHM UNDER

DIFFERENT NATURAL SCENE MODELS USING OVERALL

BAD-PIXEL PERCENTAGE (%)

Tsukuba Venus Cones Teddy

Canonical formulation 9.71 11.21 24.31 32.18

Previous NSS model
in [26] 6.45 5.34 20.78 23.35

Proposed NSS model using
only L* 5.19 2.55 18.86 20.58

Proposed NSS model using
L*, a*, and b* 4.91 2.21 18.57 20.37

TABLE IV

COMPARISON OF BAYESIAN STEREO ALGORITHM UNDER DIFFERENT

NATURAL SCENE MODELS USING NONOCCLUDED

BAD-PIXEL PERCENTAGE (%)

Tsukuba Venus Cones Teddy

Canonical formulation 7.78 9.79 12.72 23.34

Previous NSS model
in [26] 4.26 3.69 8.54 13.20

Proposed NSS model using
only L* 2.92 1.44 7.58 12.37

Proposed NSS model using
L*, a*, and b* 2.64 1.18 7.35 12.15

TABLE V

COMPARISON OF BAYESIAN STEREO ALGORITHM UNDER

DIFFERENT NATURAL SCENE MODELS USING TEXTURED

BAD-PIXEL PERCENTAGE (%)

Tsukuba Venus Cones Teddy

Canonical formulation 4.77 3.85 12.49 19.82

Previous NSS model
in [26] 4.70 2.96 8.39 12.20

Proposed NSS model using
only L* 3.34 1.62 7.61 11.10

Proposed NSS model using
L*, a*, and b* 3.30 1.41 7.39 10.93

formulation. By observing the textured bad-pixel percentage
on Tsukuba in Table V, it is apparent that the Bayesian stereo
algorithms using the canonical formulation and the previous
NSS model deliver similar performance, while the proposed
luminance-chrominance-range NSS model yields a bolstered
Bayesian stereo algorithm that delivers a significantly more
accurate disparity map. Moreover, on the complicated image
pairs Cones and Teddy, while the previous NSS model gener-
ates fairly good disparity maps on non-occluded and textured
regions, the new NSS models further improve the results with
fewer pixel errors, demonstrating the utility of the derived
marginal and conditional models that serve to regularize the
range/depth and luminance/chrominance statistics of the stereo
solution on natural images.

B. Augmentation by Chrominance

In Tables III–V, we also list numerical results from the pro-
posed luminance-chrominance-range NSS model using only

the luminance channel (L*). It can be seen that for all four
image pairs, the results using both the luminance (L*) and
chrominance (a* and b*) channels yields better performance
than using only the luminance channel with respect to all
three different performance metrics. For example, the vivid
and diverse colored objects in Teddy increase the difficulty
of finding binocular correspondences; however, the proposed
luminance-chrominance-range NSS model is better able to
solve the problem by exploiting the derived conditional model
between the natural depth and chrominance channels, resulting
in more accurate disparity maps with lower non-occluded
and textured bad-pixel percentages. Based on this quantitative
comparison, we may conclude that chromatic information not
only augments the performance of Bayesian stereo algorithms,
but could also play a useful role in human binocular visual
perception. For example, stereo processing in human vision
systems could possibly leverage the statistical relationship
between chrominance and range/depth cues in natural images
to augment a variety of 3D visual tasks [30]–[32].

VIII. CONCLUSION

By utilizing high-resolution, high-quality color images and
co-registered range maps in the LIVE Color+3D Data-
base, we examined the statistical relationships between
multi-scale, multi-orientation Gabor decompositions of lumi-
nance/chrominance and range/depth data in natural scenes. We
showed that the marginal statistics of both image and range
magnitude responses follows the well-known 1/ f 2 power
law, and the conditional statistics of range gradients given
image magnitude responses provide evidences supporting the
co-occurrence of natural image and range variations. We
further derived marginal and conditional priors relating natural
luminance/chrominance and disparity, and demonstrated their
efficacy with application to the Bayesian stereo algorithm.
We also demonstrated that including the chrominance-range
models augments the performance of the Bayesian stereo
algorithm over using only the luminance information. More
importantly, the superior performance incorporating color and
range priors to previous luminance-only models bolsters the
psychophysical evidence that not only image intensity, but also
chromatic information is useful in 3D visual processing.

The statistical analysis we have performed and the color-
range priors we have derived in this paper yield insight into
how 3D structures in the environment might be recovered
from color image data. We believe that these fundamental
regularities between luminance/chrominance and range/depth
information in natural images can be further utilized in a
variety of 3D image and video applications. For example,
shape-from-X (shading, texture, etc.) algorithms can generate
more accurate three-dimensional structures using additional
color-range statistics, and 3D (stereo) quality assessment can
better judge distortions from irregular chrominance and range
correspondences. Future work will involve utilizing more
detailed psychophysical models of human color and depth
processing, and discovering more complete statistical models
describing the interactions between color and range data in
natural images.
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